5,160 research outputs found

    Quantum Layers over Surfaces Ruled Outside a Compact Set

    Full text link
    In this paper, we proved the quantum layer over a surface which is ruled outside a compact set, asymptotically flat but not totally geodesic admits ground states

    Polymer Maximum Drag Reduction: A Unique Transitional State

    Full text link
    The upper bound of polymer drag reduction is identified as a unique transitional state between laminar and turbulent flow corresponding to the onset of the nonlinear breakdown of flow instabilities

    Jet substructure and probes of CP violation in Vh production

    Get PDF
    We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.Comment: 37 pages, 17 figures; v3 matches published versio

    Wind-Fed GRMHD Simulations of Sagittarius A*: Tilt and Alignment of Jets and Accretion Discs, Electron Thermodynamics, and Multi-Scale Modeling of the Rotation Measure

    Full text link
    Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D, wind-fed MHD and GRMHD simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including nonzero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf-Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β2\beta \approx 2) with an \sim r1r^{-1} density profile independent of the strength of magnetic fields in the winds. Our simulations reach the MAD state for some, but not all cases. In tilted flows, SANE jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behavior: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates, 230 GHz flux, and unresolved linear polarization fractions roughly consistent with observations for several choices of electron heating fraction. Absent another source of large-scale magnetic field, winds with a higher degree of magnetization (e.g., where the magnetic pressure is 1/100 of the ram pressure in the winds) may be required to get a sufficiently large RM with consistent sign.Comment: Accepted by MNRAS. Animations for several figures in the paper are available at https://www.youtube.com/playlist?list=PL3pLmTeUPcqSd4jVBnRubYQpa-Dma25i

    On-board processing for future satellite communications systems: Satellite-Routed FDMA

    Get PDF
    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented

    Dark-Matter Decays and Self-Gravitating Halos

    Get PDF
    We consider models in which a dark-matter particle decays to a slightly less massive daughter particle and a noninteracting massless particle. The decay gives the daughter particle a small velocity kick. Self-gravitating dark-matter halos that have a virial velocity smaller than this velocity kick may be disrupted by these particle decays, while those with larger virial velocities will be heated. We use numerical simulations to follow the detailed evolution of the total mass and density profile of self-gravitating systems composed of particles that undergo such velocity kicks as a function of the kick speed (relative to the virial velocity) and the decay time (relative to the dynamical time). We show how these decays will affect the halo mass-concentration relation and mass function. Using measurements of the halo mass-concentration relation and galaxy-cluster mass function to constrain the lifetime--kick-velocity parameter space for decaying dark matter, we find roughly that the observations rule out the combination of kick velocities greater than 100 km/s and decay times less than a few times the age of the Universe.Comment: 17 pages, 10 figures, replaced with published versio
    corecore